Department of Organic Technology and Petrochemistry Silesian University of Technology, Ul. Krzywoustego 4, PL-44101 Gliwice, Poland Received April 19, 2005

Abstract

The reaction of α-hydroxyacid hydrazides and orthoesters in ethanol-acetic acid solution has been studied and a series of 4-acylamino-1,2,4-triazoles has been obtained as the final products. Some acyclic intermediates: 1-acyl-2-ethoxymethylenehydrazines and N, N^{\prime}-bis(methanecarbonylamino)formamidine derivative have been also separated during the process. The structures of products was confirmed by typical spectroscopic methods and X-ray analysis.

J. Heterocyclic Chem., 42, 1393 (2005).
α-Hydroxyacid hydrazides constitute potential precursors for the synthesis of nitrogen- and nitrogen-oxygencontaining heterocyclic systems. We know the reactions of α-hydroxyacids with hydrazine hydrate yielding 4-amino-1,2,4-triazoles substituted symmetrically in positions 3,5- with hydroxymethyl groups, used principally as building blocks for macrocyclic systems [1-4]. Similarly, the unsubstituted alkanecarboxylic acid hydrazides due to heating with hydrazine hydrate give 1,2,4-triazoles [5]. The amino derivatives are also obtained with satisfactory yields from ester formylhydrazones in the reaction with hydrazine hydrate, ethyl carbazate or tert-butyl carbazate [6]. Some reactions of alkanecarboxylic and arylcarboxylic acid hydrazides with orthoesters yielding the derivatives of 1,3,4-oxadiazoles are also described in the literature [7,8]. Authors reported that the first stage of the reaction between hydrazides of alkanecarboxylic acids and triethyl orthoformate yields 1-acyl-2-ethoxymethylenehydrazines, which subjected to heating undergo condensation to $1,3,4$-oxadiazoles. On the other hand, there are also mentions about the formation of six-membered ring such as 1,4,5,6-tetrahydro-1,2,4-triazine-6-one in the reaction of aminoacid hydrazides with orthoesters [9] or 4,5-dihydro-1,2,4-triazine-6-one from amino acid imidates and hydrazines [10]. Considering this fact we came to the conclusion that replacing the amino group with a hydroxy group in hydrazide followed by the reaction with orthoesters would lead to the corresponding 1,3,4-oxadiazine-5-ones (Scheme 1).

Scheme 1

This paper describes the investigation studies on the reactions of hydrazides of α-hydroxyacids with
orthoesters, taking into consideration the possibility to synthesize in this way 1,3,4-oxadiazine derivatives.

Heating the hydrazides of α-hydroxyacids with an excess of orthoesters in the presence of boiling ethanol and acetic acid we obtained the products whose structure did not correspond to the expected 1,3,4-oxadiazine but to 1,2,4-triazole. In fact, the compound obtained from the reaction of benzilic acid hydrazide with triethyl orthopropionate showed the structure corresponding to 4-(1,1-diphenyl-1-hydroxymethanecarbonylamino)-3-(1-hydroxy-1,1-diphenylmethyl)-5-ethyl-1,2,4-triazole (4i) as demonstrated by X-ray crystallographic analysis (Figure 1).

Figure 1. View of the molecule of 4-(-(1,1-diphenyl-1-hydroxymethane-carbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i) by X-ray analysis with numbering of the atoms.

Analogous compounds are formed in the reaction of other hydrazides of α-hydroxyacids with orthoesters. Based on the structure of the products, the following reaction scheme can be proposed:

Scheme 2

Following literature [7] we assumed that the first stage of the reaction between the hydrazides of α-hydroxyacids (1) and orthoesters yields acyclic intermediates, 1-acyl-2ethoxymethylenehydrazines (2). Initial research on the reactions of α-hydroxyacid hydrazides with the excess of orthoester has proved that the main products are indeed acyclic derivatives of 1-(alkanecarbonyl)-2-ethoxymethylenehydrazine (2). ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of two intermediates $(\mathbf{2 h}, \mathbf{2 i})$ produced in the reaction of benzilic acid hydrazide with triethyl orthoacetate and orthopropionate showed a double number of peaks certainly due to the presence of E and Z form. In the case of the unsubstituted arrangement $\left(2 g, R^{3}=H\right)$ only one isomer was recorded. Imine carbon atom in the compound $\mathbf{2}$ is susceptible to the attack of nucleophiles, so we assumed that using an excess of orthoester, the reaction would yield the derivatives of 1,3,4-oxadiazine, which might have been formed as a result of intramolecular reaction, similarly as it takes place in the case of the reaction with the hydrazides of α-aminoacids [9]. However, the formation of 4 -amino-1,2,4-triazole (4) derivatives in the reaction indicates that the first step of reaction leading to $\mathbf{2}$ is much slower than the following steps, and as the result, the more nucleophilic molecule of α-hydroxyacid hydrazide reacts with the compound 2 yielding acyclic N, N^{\prime}-bis(1-hydroxy-1phenylmethanecarbonylamino)formamidine (3d).

The cyclization of N, N^{\prime}-bisformamidine derivative $\mathbf{3}$ takes place in acidic medium at elevated temperature. Important roles in this process are played by acetic acid, which is the catalyst and ethanol which is used as a solvent. According to our examination, in the absence of both of them the reaction stops at the intermediate product -1-alkanecarbonyl-2-ethoxymethylenehydrazine (2). The
structures both of acyclic intermediates and final 4-acy-lamino-1,2,4-triazoles were confirmed by means of elemental analyses, typical spectroscopic methods and X-ray analysis.

The X-ray investigation revealed that 4-(1,1-diphenyl-1-hydroxy-methanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i, Figure 1) crystallizes in amino-carbonyl tautomeric form with one molecule of the water per one molecule of the free base. Selected geometrical parameters for the investigated crystal structure 4i taken from X-ray analysis are given in Table 1 and Table 2.

Table 1
Selected bond lengths [\AA] for 4-(1,1-diphenyl-1-hydroxymethanecar-bonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i) taken from X-ray analysis.

Selected bond	Lenght $[\AA]$	Selected bond	Lenght $[\AA]$
O7-C6			
O10-C9	$1.4174(15)$	N8-C9	$1.3452(18)$
O12-C11	$1.2192(16)$	C3-C6	$1.5247(18)$
N1-C5	$1.4259(16)$	C5-C13	$1.4930(2)$
N1-N2	$1.3014(18)$	C6-C31	$1.5403(18)$
N2-C3	$1.4003(16)$	C6-C21	$1.5398(18)$
N4-C5	$1.3065(17)$	C9-C11	$1.5414(18)$
N4-C3	$1.3644(18)$	C11-C41	$1.5301(2)$
N4-N8	$1.3845(15)$	C11-C51	$1.5306(19)$
		C13-C14	$1.5150(3)$

Table 2
Selected angles $\left[^{\circ}\right.$] for 4-(1,1-diphenyl-1-hydroxymethanecarbonyl-amino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i) taken from X-ray analysis.

Selected bonds	Angle [$\left.{ }^{\circ}\right]$	Selected bonds	Angle $\left.{ }^{[}\right]$
C5-N1-N2	$107.94(11)$	O7-C6-C21	$109.19(10)$
C3-N2-N1	$107.92(11)$	C3-C6-C31	$107.21(10)$
C5-N4-C3	$107.00(11)$	C3-C6-C21	$111.04(11)$
C5-N4-N8	$123.83(11)$	C31-C6-C21	$111.65(10)$
C3-N4-N8	$129.08(11)$	O10-C9-N8	$123.45(13)$
C9-N8-N4	$119.28(11)$	O10-C9-C11	$122.50(12)$
N2-C3-N4	$108.26(11)$	N8-C9-C11	$114.05(11)$
N2-C3-C6	$125.61(11)$	O12-C11-C41	$111.06(11)$
N4-C3-C6	$125.94(11)$	O12-C11-C51	$109.85(11)$
N1-C5-N4	$108.87(12)$	C41-C11-C51	$113.22(11)$
N1-C5-C13	$127.43(13)$	O12-C11-C9	$105.61(10)$
N4-C5-C13	$123.69(13)$	C41-C11-C9	$106.12(11)$
O7-C6-C3	$110.81(10)$	C51-C11-C9	$110.65(11)$
O7-C6-C31	$106.85(10)$	C5-C13-C14	$112.96(15)$

Bond lengths and angles in this ring do not differ significantly from those reported for other related structures [1113]. The N1-C5 of $1.3014(18) \AA$ and $\mathrm{N} 2-\mathrm{C} 3$ of $1.3065(17)$ \AA bonds have rather double-bond character, while the other $\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{N}-\mathrm{C}$ ring bonds have intermediate values between single- and double-bond lengths characteristic for delocalizated π-electron systems (Table 1). The ethyl substituent in the position 5 lies almost in the plane of the tria-
zole ring: torsion angle N1-C5-C13-C14 is $-6.9(3)^{\circ}$ and displacements of C13 and C14 are 0.024(2) and -0.120(3) A, respectively. The conformation of the molecule observed in the crystal of $\mathbf{4 i}$ is forced mainly by steric repulsion between the three large substituents in the adjacent 3,4 and 5 positions of the triazole ring and the intramolecular hydrogen bonds N8-H8 $\supset \mathrm{O} 12, \mathrm{C} 36-\mathrm{H} 361 \supset \mathrm{O} 7, \mathrm{C} 42-\mathrm{H} 421 \supset \mathrm{O} 12$ and OW-H1WゝO10 (Table 3).
was collected by filtration and recrystallized from alcohol (methanol, ethanol). In one case the post-reaction mixture was distilled under reduced pressure to get 2-ethoxymethylenehydrazine intermediate 2a.

1-(1-Hydroxyethanecarbonyl)-2-ethoxymethylenehydrazine (2a).
This compound was obtained as a yellowish liquid in 65% yield; bp 144-146 ${ }^{\circ} \mathrm{C} / 20$ torr; $\mathrm{R}_{\mathrm{f}}: 0.38 ;{ }^{1} \mathrm{H} \mathrm{nmr}$ (DMSO- d_{6},

Table 3
The geometry of intra- and intermolecular hydrogen bonds in $\mathbf{4 i}$.

Type	Position code	$\begin{gathered} \mathrm{D}-\mathrm{H} \\ {[\AA]} \end{gathered}$	$\begin{gathered} \mathrm{H} \ldots \mathrm{~A} \\ {[\AA \mathrm{~A}]} \end{gathered}$	$\begin{gathered} \text { D....A } \\ {[\AA A]} \end{gathered}$	$\underset{\left[{ }^{\circ}\right]}{\mathrm{D}-\mathrm{H} \ldots \mathrm{~A}}$
N8-H8... O 12	intra	0.911(18)	2.11(2)	2.4777(16)	102.8(15)
C36-H361...O7	intra	0.977(18)	2.30(2)	2.664(2)	101.1(16)
C42-H241...O12	intra	0.97(2)	2.34(2)	2.748(2)	104.5(14)
OW-H1W...O10	intra	0.95 (3)	1.93(4)	2.8295(19)	157.0(3)
O7-H7...N1	2645 [a]	0.94(2)	1.79(2)	2.7217(17)	167.7(18)
O7-H7...N2	2645 [a]	0.94(2)	2.598 (19)	$3.3683(15)$	139.2(15)
N8-H8...N2	2645 [a]	0.911(18)	2.24(2)	3.0216 (18)	111.9(8)
O12-H12...OW	2545 [b]	0.869(19)	1.947(18)	2.7686(19)	157.3(19)

[a] $2645=3 / 2-x,-1 / 2+y, 1 / 2-z$; [b] $2545=1 / 2-x,-1 / 2+y, 1 / 2-z$.

The packing of the molecules in the crystal of $\mathbf{4 i}$ is determined by the net of the intermolecular hydrogen bonds with geometry and symmetry codes presented in Table 3.
In conclusion, it must be emphasized that this type of reaction of α-hydroxyacid hydrazides and orthoesters in ethanolacetic acid solution which so far has not been described in literature, affords new potentials involving the synthesis of asymmetrically substituted 4-amino-1,2,4-triazoles.

EXPERIMENTAL

UV spectra were recorded on a Shimadzu UV-2102 spectrophotometer; Elemental analyses were carried out with a Perkin Elmer 240c analyser. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra were recorded on a Varian Inova 300 spectrometer in DMSO solution using TMS as internal standard. Thin layer chromatography was carried out on silica gel $60 \mathrm{~F}_{254}$ (Merck) thin layer chromatography plates using a benzene-ethyl acetate ($1: 3 \mathrm{v} / \mathrm{v}$) as the mobile phase. Orthoesters were purchased from Fluka Chemie GmbH.

Synthesis of α-hydroxyacids Hydrazides (1a-c).
The hydrazides of α-hydroxyacids were obtained according to a standard procedure in the reaction of ethyl esters of α-hydroxyacids with hydrazine hydrate to yield: The hydrazide of lactic acid (1a) [14]: bp 153-156 ${ }^{\circ} \mathrm{C} / 2$ torr; The hydrazide of mandelic acid (1b) [15]: mp 151-153 ${ }^{\circ} \mathrm{C}$; The hydrazide of benzilic acid (1c) [16]: mp 167-169 ${ }^{\circ} \mathrm{C}$.
General Procedure for the Preparation of Substituted 1-(Alkanecarbonyl)-2-ethoxymethylenehydrazine Derivatives (2).

A solution of the appropriate hydrazide (1) (0.025 mole) and triethyl orthoester (20 mL) was heated under mild reflux for 24 hours. Then it was cooled giving white precipitate of $\mathbf{2}$, which
$\left.\mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.22\left(\mathrm{t}, J=7.2,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.33(\mathrm{~d}, J=6.9,3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 4.12\left(\mathrm{q}, J=7.2,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.42(\mathrm{q}, J=6.9,1 \mathrm{H}$, $\mathrm{HC}=\mathrm{O}$), $6.03(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}), 8.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 8.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$ ppm; uv: $\lambda_{\text {max }}\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH}: 227.6$ (6.93) nm.

Anal. Calcd. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 45.01; H, 7.57; N, 17.49. Found: C, 45.22; H, 7.70; N, 17.56.

1-(1-Hydroxy-1-phenylmethanecarbonyl)-2-ethoxymethylenehydrazine (2d).

This compound was obtained as a white solid in 32% yield; mp $125-129{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.04 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.22(\mathrm{t}, J=$ $\left.7.2,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.04\left(\mathrm{q}, J=7.2,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.95(\mathrm{~d}$, $J=4.5,1 \mathrm{H}, \mathrm{PhCH}), 6.23(\mathrm{~d}, J=4.5,1 \mathrm{H}, \mathrm{OH}), 7.26-7.45(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{Ph}), 8.32$ (s, $1 \mathrm{H}, \mathrm{HC}=\mathrm{N}$), 10.71 (s, $1 \mathrm{H}, \mathrm{NH}$) ppm; uv: $\lambda_{\text {max }}$ $\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH}: 205.0$ (25.70), 232.0 (12.50) nm.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 59.44; H, 6.36; $\mathrm{N}, 12.60$. Found: C, 59.76; H, 6.22; N, 12.74.

1-(1,1-Diphenyl-1-hydroxymethanecarbonyl)-2-ethoxyethylenehydrazine (2h).

This compound was obtained as a white solid in 75% yield; mp $162-165{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.17,0.50 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.22(\mathrm{t}$, $J=7.2,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), $1.25\left(\mathrm{t}, J=7.2,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.86$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07(\mathrm{q}, J=7.2,2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.15\left(\mathrm{q}, J=7.2,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 7.00 (s, 1 H, OH), 7.26-7.43 (m, 20H, Ph), 10.00 (s, $1 \mathrm{H}, \mathrm{NH}$), 10.21 (s, $1 \mathrm{H}, \mathrm{NH}$) ppm; uv: $\lambda_{\text {max }}\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH}: 208.0$ (25.80), 227.0 (15.00) nm.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.20; H, 6.46; $\mathrm{N}, 8.96$. Found: C, 69.36; H, 6.52; N, 9.05.

1-(1,1-Diphenyl-1-hydroxymethanecarbonyl)-2-ethoxypropylenehydrazine (2i).

This compound was obtained as a white solid in 73% yield; mp $120-122{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.17,0.54 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 0.98(\mathrm{t}, J$
$\left.=7.5,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06\left(\mathrm{t}, \mathrm{J}=7.5,3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) 1.22(\mathrm{t}, \mathrm{J}=$ $\left.6.9,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(\mathrm{t}, J=6.9,3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.25(\mathrm{q}, J$ $\left.=7.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.43\left(\mathrm{q}, J=7.5,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.07(\mathrm{q}, J=$ $\left.6.9,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.14\left(\mathrm{q}, J=6.9,2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.82(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{OH}), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.24-7.43(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 9.98(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 10.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 9.4\left(\mathrm{CH}_{3}\right), 10.1\left(\mathrm{CH}_{3}\right)$, $14.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $15.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 61.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 63.8\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 80.4\left(\mathrm{Ph}_{2} \mathrm{COH}\right)$, $80.5\left(\mathrm{Ph}_{2} \mathrm{COH}\right), 127.2,127.3,127.4,127.5,127.6,127.7,143.7$, $144.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 156.0(\mathrm{C}=\mathrm{N}), 167.2(\mathrm{C}=\mathrm{N}), 167.8(\mathrm{C}=\mathrm{O}), 169.4(\mathrm{C}=\mathrm{O})$ ppm; uv: $\lambda_{\text {max }}\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH}: 205.0$ (25.60), 232.0 (12.50) nm.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $69.91 ; \mathrm{H}, 6.80 ; \mathrm{N}, 8.58$. Found: C, 70.06 ; H, 6.71; N, 8.78.

The Preparation of N, N^{\prime}-Bis(1-hydroxy-1-phenylmethanecar-bonylamino)-formamidine ($\mathbf{3 d}$).

A mixture of mandelic acid hydrazide (1b) ($1.87 \mathrm{~g}, 11.3$ mmole) and 2-ethoxymetylenehydrazine intermediate (2d) in methanol (15 mL) was heated under reflux until the disappearance of the intermediate ($\mathbf{2 d}$) (tlc) was completed. Then methanol was removed using a rotary evaporator giving white crude product (3d) which was crystallized from ethyl acetate (yield: 26%); mp $155-158^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}: 0.02 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 5.19(\mathrm{~d}, J=3.0,1 \mathrm{H}$, $\mathrm{PhCH}), 5.54(\mathrm{~d}, J=3.0,1 \mathrm{H}, \mathrm{PhCH}), 6.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.59(\mathrm{~d}, J$ $=3.0,1 \mathrm{H}, \mathrm{OH}), 7.22-7.49(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 8.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 9.81$ (br s, 1H, NH), 10.38 (s, $1 \mathrm{H}, \mathrm{NH}$), $11.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHN}=\mathrm{C}) \mathrm{ppm}$; uv: $\lambda_{\text {max }}\left(\varepsilon \cdot 10^{-3}\right) \mathrm{MeOH}: 207.0(21.50), 247.0(8.80) \mathrm{nm}$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 59.63; H, 5.31; N, 16.35. Found: C, 59.86; H, 5.42; N, 16.50.

General Procedure for the Preparation of Substituted 4-Acylamino-1,2,4-triazoles (4).

The appropriate triethyl orthoester (0.06 mole) was dropped into a boiling mixture of the hydrazide (1) (0.02 mole) in ethanol $(7 \mathrm{~mL})$ and glacial acetic acid $(1 \mathrm{~mL})$. It was kept under reflux for about 1-2 hours. After cooling the solution a white precipitate was obtained that was collected by filtration and the crude product (4) was crystallized from ethyl acetate.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-1,2,4triazole (4a).

This compound was obtained as a white solid in 50% yield; mp 192-194 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.08 ;{ }^{1} \mathrm{H} \operatorname{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.32$ (d, $\left.3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.42\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CC}=\mathrm{O}\right)$, $4.24(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}), 4.65(\mathrm{q}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CHC}=\mathrm{O})$, $5.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COH}), 5.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCOH}), 8.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C} 5)$, $11.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 18.5\left(\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{C} 3\right), 20.6$ $\left(\mathrm{CH}_{3}-\mathrm{CHOHCONH}\right), 65.4\left(\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{C} 3\right)$, $68.3\left(\mathrm{CH}_{3}-\right.$ CHOHCONH), 143.2 (C5), 151.6 (C3), $172.0(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 41.99; H, 6.06; $\mathrm{N}, 27.98$; O, 23.97. Found: C, 42.05; H, 6.03; N, 27.95; O, 23.90.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-5-methyl-1,2,4-triazole (4b).

This compound was obtained as a white solid in 64% yield; mp $227-231{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.04 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.33$ (d, 3 H , $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CC}=\mathrm{O}\right), 2.12(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{N}\right), 4.20-4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.50-4.70(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHC}=\mathrm{O}), 5.35(\mathrm{~d}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{COH}), 5.89(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}$, $\mathrm{O}=\mathrm{CCOH}), 11.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta 8.0\left(\mathrm{CH}_{3}-\mathrm{C} 5\right)$, $18.5\left(\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{C} 3\right), 20.5\left(\mathrm{CH}_{3}-\mathrm{CHOHCONH}\right), 65.3\left(\mathrm{CH}_{3}-\right.$

CHOH-C3), $68.3\left(\mathrm{CH}_{3}-\mathrm{CHOHCONH}\right), 151.6(\mathrm{C} 3), 152.3(\mathrm{C} 5)$, $171.8(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for: $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 44.85; H, 6.59; $\mathrm{N}, 26.15$; O, 22.41. Found: C, 44.86; H, 6.41; N, 26.31; O, 22.42.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-5-ethyl-1,2,4-triazole (4c).

This compound was obtained as a white solid in 48% yield; mp $240-243{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}: 0.10 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.16(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CC}=\mathrm{O}\right), 2.46\left(\mathrm{q}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.20-$ $4.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.50-4.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}), 5.34(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.4 \mathrm{~Hz}, \mathrm{COH}), 5.85(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}, \mathrm{O}=\mathrm{CCOH}), 11.19(\mathrm{~s}, 1 \mathrm{H}$, NH) ppm; ${ }^{13} \mathrm{C}$ nmr: $\delta 7.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right), 16.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right)$, $18.5\left(\mathrm{CH}_{3}-\mathrm{CHOH}-\mathrm{C} 3\right), 20.5\left(\mathrm{CH}_{3}-\mathrm{CHOHCONH}\right), 65.3\left(\mathrm{CH}_{3}-\right.$ CHOH-C3), $68.4\left(\mathrm{CH}_{3}-\mathrm{CHOHCONH}\right), 151.7(\mathrm{C}-3), 153.5(\mathrm{C} 5)$, $171.7(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for: $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 47.36; $\mathrm{H}, 7.08 ; \mathrm{N}, 24.53$; O, 21.03. Found: C, 47.30; H, 7.10; N, 24.57; O, 20.96.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-1,2,4-triazole (4d).

This compound was obtained as a white solid in 51% yield; mp $244-245{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.06 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 4.92(\mathrm{~d}, 1 \mathrm{H}$, $J=5.2 \mathrm{~Hz}, \mathrm{CH}), 5.01(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{CHC}=\mathrm{O}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J$ $=5.2 \mathrm{~Hz}, \mathrm{COH}), 6.12(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}, \mathrm{O}=\mathrm{CCOH}), 7.23-7.47(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}), 9.96$ (s, 1H, H-C5), $11.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr}: \delta$ 66.3 ($\mathrm{PhCHOH}-\mathrm{C} 3$), 70.8 (PhCHOHCONH), 126.5-129.1, 139.5, $141.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 145.1(\mathrm{C} 5), 153.5(\mathrm{C} 3), 171.1(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 62.96; H, 4.98; $\mathrm{N}, 17.28$; O, 14.78. Found: C, 62.98; H, 4.99; N, 17.30; O, 14.72.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-5-methyl-1,2,4-triazole (4e).

This compound was obtained as a white solid in 41% yield; mp $231-232{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.04 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 2.00(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 5.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 5.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}), 5.16(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.7 \mathrm{~Hz}, \mathrm{COH}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=4.2 \mathrm{~Hz}, \mathrm{O}=\mathrm{CCOH}), 7.25-7.52(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}), 11.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ nmr: $\delta 8.4\left(\mathrm{CH}_{3}-\mathrm{C} 5\right), 66.4$ ($\mathrm{PhCHOH}-\mathrm{C} 3$), 70.8 (PhCHOHCONH), 126.5-128.3, 139.2, $141.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.6(\mathrm{C} 5), 153.7(\mathrm{C} 3), 171.1(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 63.89; H, 5.33; $\mathrm{N}, 16.56$; O, 14.19. Found: C, 63.27; H, 5.37; N, 16.42; O, 14.94.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-5-ethyl-1,2,4-triazole (4f).

This compound was obtained as a white solid in 32% yield; mp $211-213{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.07 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.02(\mathrm{t}, 3 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.32\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 5.22$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{COH}), 5.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHC}=\mathrm{O}), 6.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COH}), 6.62(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{O}=\mathrm{CCOH}), 7.26-7.52(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 11.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ nmr: $\delta 8.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right), 16.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right), 66.3$ ($\mathrm{PhCHOH}-\mathrm{C} 3$), 70.9 (PhCHOHCONH), 126.8-129.1, 139.0, $141.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 153.7(\mathrm{C} 3), 154.0(\mathrm{C} 5), 171.1(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 64.75; H, 5.73; N, 15.90; O, 13.62. Found: C, 64.77 ; H, 5.75 ; N, 15.85; O, 13.59.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-1,2,4-triazole (4g).

This compound was obtained as a white solid in 25% yield; mp $209-211^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.07 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 6.70(\mathrm{~s}, 1 \mathrm{H}$,
$\mathrm{COH}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCOH}), 7.26-7.42(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 9.82(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C} 5), 11.22$ (s, 1H, NH) ppm; ${ }^{13} \mathrm{C}$ nmr: $\delta 76.8\left(\mathrm{Ph}_{2} \mathrm{COH}-\right.$ C3), $80.8\left(\mathrm{Ph}_{2}(\mathrm{OH}) \mathrm{CONH}\right), 126.6-128.6,142.9-143.3\left(\mathrm{C}_{\mathrm{Ar}}\right)$, 155.7 (C3), 156.1 (C5), 171.2 (C=O) ppm.

Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 73.09; H, 5.08; N, 11.75. Found: C, 73.20; H, 4.99; N, 11.93.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-methyl-1,2,4-triazole (4h).

This compound was obtained as a white solid in 82% yield; mp $205-207^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.03 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 1.73$ (s, 3 H , CH_{3}), $6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{COH}), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCOH}), 7.00-7.28(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{Ph}), 10.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{nmr:} \delta 8.9\left(\mathrm{CH}_{3}-\mathrm{C} 5\right), 76.7$ ($\left.\mathrm{Ph}_{2} \mathrm{COH}-\mathrm{C} 3\right), 80.8\left(\mathrm{Ph}_{2}(\mathrm{OH}) \mathrm{CONH}\right), 127.0-127.6,142.8-144.3$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 152.7$ (C5), $155.7(\mathrm{C} 3), 171.2(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.
Anal. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 73.44; $\mathrm{H}, 5.35 ; \mathrm{N}, 11.41$. Found: C, 73.57; H, 5.50; N, 11.49.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i).

This compound was obtained as a white solid in 48% yield; mp $213-215^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}: 0.02 ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{Me}_{4} \mathrm{Si}\right): \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=$ $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.02\left(\mathrm{q}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.56(\mathrm{~s}, 1 \mathrm{H}$, COH), 6.87 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{CCOH}$), 7.03-7.28 (m, 20H, Ph), 11.00 (s, $1 \mathrm{H}, \mathrm{NH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ nmr: $\delta 8.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right), 16.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C} 5\right)$, $76.7\left(\mathrm{Ph}_{2} \mathrm{COH}-\mathrm{C} 3\right), 80.7\left(\mathrm{Ph}_{2}(\mathrm{OH}) \mathrm{CONH}\right), 126.8-127.9,142.6-$ $143.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 155.1(\mathrm{C} 5), 155.5(\mathrm{C} 3), 171.0(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$.

Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 73.78; $\mathrm{H}, 5.60 ; \mathrm{N}, 11.10$. Found: C,73.85; H, 5.71; N, 11.24.

Crystal Data for 4i.
Compound 4i has $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, F W=522.59$, monoclinic, space group $\mathrm{P} 2{ }_{1} / \mathrm{n}, a=15.210$ (3) $\AA, b=8.8730(18) \AA, c=$ $21.519(4) \AA, \beta=109.77(3)^{\circ}, V=2733.1(9) \AA^{3}, Z=4, \mathrm{~d}_{\text {calcd }}=$ $1.270 \mathrm{gcm}^{-3}, F(000)=1104, \mu(\mathrm{CuK} \alpha)=0.690 \mathrm{~mm}^{-1}$. Colorless prismatic crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution. X-ray data were collected on the Bruker SMART APEX CCD diffractometer at room temperature using $\mathrm{CuK} \alpha$ radiation ($\lambda=1.54178 \AA$); crystal size: $0.10 \times 0.09 \times 0.04, \omega$ scans, no. of measured reflection 30346 (θ range $3.12-70.04^{\circ}$, index ranges $-18 \leq h \leq 18,-10 \leq k \leq 9,-26 \leq$ $1 \leq 26)$, no. of independent reflection $5186\left(\mathrm{R}_{\mathrm{int}}=0.0275\right)$, absorption correction: multi-scan, Tmin/Tmax $=0.529$ [17]. The structure was solved by direct methods using SIR92 [18] and refined by full-matrix least-squares with SHELXL97 [19]. All hydrogen atoms were located from $\Delta \rho$ map and their coordinates were refined with isotropic displacement parameters taken as 1.5 times those of the respective parent atoms. The final $R=0.0390, w R=$ 0.1132 for 4429 reflections with $I>2 \sigma(I)$ and 443 parameters, $S=$ 1.067, an extinction coefficient $К=0.0023(2)$, $(\Delta / \sigma)_{\max }=0.000$, $(\Delta \rho)_{\max }=0.200$ and $(\Delta \rho)_{\min }=-0.210 \mathrm{e}^{\circ} \AA^{-3}$. Molecular graphics were prepared using ORTEP3 for Windows [20], PARST [21] and PLATON/PLUTON [22] were used for geometrical calculations. All calculations were performed using WINGX ver. 1.64 .05 pack-
age [23]. CCDC 270400 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.ac.uk/conts/retrieving.html.

Acknowledgements.
The authors wish to thank crystallographers: Andrzej Fruziński, Ph.D. from Technical University of Lodz and Zbigniew Karczmarzyk, Ph.D. from University of Podlasie for X-ray analysis.

REFERENCES AND NOTES

[1] L. Echegoyen, M. V. Martinez-Diaz, J. de Mendoza and T. Torres, Tetrahedron, 48, 9545 (1992).
[2] M. V. Martinez-Diaz, J. de Mendoza, F. Santos and T. Torres, Tetrahedron Asymmetry, 5, 1291 (1994).
[3] M. V. Martinez-Diaz, J. de Mendoza and T. Torres, Synthesis, 1994, 1091.
[4] A. R. Katritzky, S. R. El-Zemity, P. Leeming, C. M. Hartshorn and P. J. Steel, Tetrahedron Asymmetry, 7, 1621 (1996).
[5] J. de Mendoza, J. M. Ontoria, C. Ortega and T. Torres, Synthesis, 1992, 398.
[6] A. A. Ikizler and N. Yildirim, J. Het. Chem., 35, 377 (1998).
[7] C. Ainsworth and R. E. Hackler, J. Org. Chem., 31, 3442 (1966).
[8] A. P. Grekov, O. P. Schwayka and L. M. Eugunova, Zh. Obsc. Chim., 29, 2027 (1959).
[9] P. S. Lobanov, A. L. Grebionkin, D. J. Zaicew, W. A. Ginolin and A. A. Potechin, Khim. Gieterotsikl. Soedin., 1991, 1388.
[10] D. J. Collins, T. C. Hughesand W. M. Johnson, Aust. J. Chem., 52, 379 (1999).
[11] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, Typical interatomic distances: organic compounds, in: International Tables for Crystallography, Vol. C, Kluwer Academic Publishers, Dordrecht/Boston/London, 1995, pp. 685-706.
[12] K. Chinnakali, H. K. Fun, A. Senthilvelan, K. Sriraghavan and V. T. Ramakrishnan, Acta Cryst., C55, 1136 (1999).
[13] A. Mrozek, J. Karolak-Wojciechowska, P. Amiel and J. Barbe, J. Mol. Struct., 524, 151 (2000).
[14] A. A. Potechin and W. M. Karelskij, Zh. Org. Khim., 7, 2100 (1971).
[15] E. M. Luis and A. McKenzie, J. Chem. Soc., 98, 647 (1941).
[16] H. Aspelund, Acta Acad. Aboensis Math. at Phys. 6, 12, 8 (1932).
[17] G. M. Sheldrick, SADABS, ver. 2.06. University of Göttingen: Germany, 2002.
[18] A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Cryst., 26, 343 (1993).
[19] G. M. Sheldrick, SHELX97 (Includes SHELXS97, SHELXL97, CIFTAB). Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen: Germany, 1997.
[20] L. J. Farrugia, ORTEP3 for Windows, J. Appl. Cryst., 30, 565 (1997).
[21] M. Nardelli, PARST, Comput. Chem., 7, 95 (1983).
[22] A. L. Spek, PLATON/PLUTON, Acta Cryst., A46, C34 (1990).
[23] L. J. Farrugia, WINGX, J. Appl. Cryst., 32, 837 (1999).

